

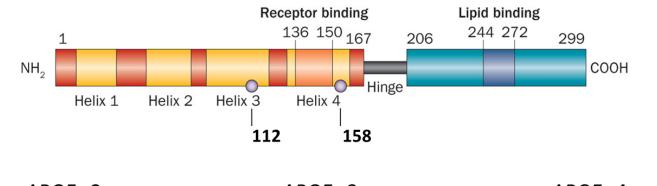
White matter hyperintensities and cognition in Alzheimer's and Lewy body dementia-does *APOE*-ε4 modulate the association?

Saira Saeed Mirza, Saeed U, Knight J, Ramirez J, Stuss DT, Keith J, Nestor SM, Yu D, Swardfager W, Rogaeva E, St. George Hyslop P, E. Black SE, **Masellis M**, Alzheimer's Disease Neuroimaging Initiative

Nothing to disclose

WMH and cognition

- White matter hyperintensities (WMH):
 - A marker of cerebral small vessel disease (SVD) in most cases
 - Also prevalent in cognitively healthy individuals
 - Are associated with worse(ning) cognitive abilities


Cognitive performance clinically = severity of the WMH burden

Complex association of WMH and cognition

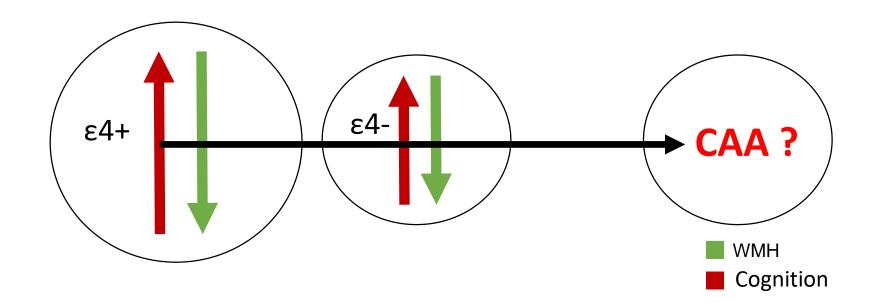
Heterogeneous etiology of WMH

- Vascular compromise and ischemia due to:
 - Cardiovascular risk factors
 - Venous collagenosis, leading to vasogenic edema
 - Cerebral Amyloid Angiopathy (CAA)
 - A combination of these
- Genetic vulnerability to neurodegeneration:
 - APOE-ε4

APOE-ε4 allele

APOE ∈2
Cys-112, Cys-158
Protective

APOE €3 *Cys*-112, *Arg*-158 **Neutral**

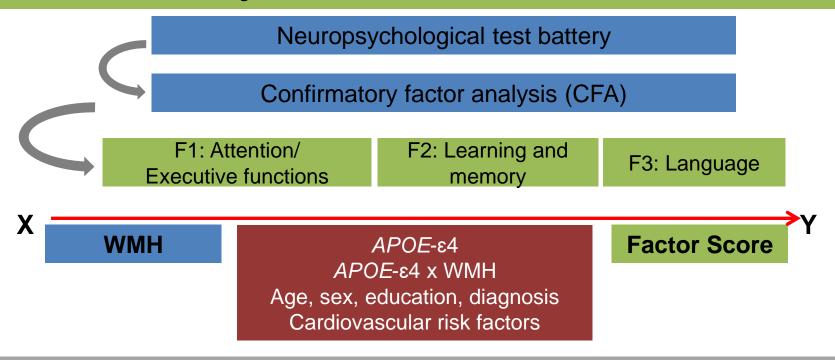

APOE ∈4
Arg-112, Arg-158
Risk Factor

- APOE-ε4 is a common risk factor for AD, DLB, mixed AD/DLB and CAA
- Role of APOE-ε4 as an effect modifier in the association of WMH and cognitive functions?

Schmidt et al., 1997; Tsuang et al., 2013; Schilling et al., 2013

Objective and hypotheses

To determine if APOE-ε4 modulates the association between WMH and cognitive impairment in patients with Alzheimer's disease (AD) and dementia with Lewy bodies (DLB).


Study setting and population

- Sunnybrook Dementia Study -SDS
- 289 (AD=239; DLB=50) stroke-free dementia patients
- Significant WMH burden
- 34 had autopsy data

- Alzheimer's Disease
 Neuroimaging Initiative (ADNI)
- 198 stroke-free AD patients
- Minimal WMH burden

Imaging (WMH), neuropsychological, APOE-ε4, and CV risk factors

Statistical analyses

Analysis repeated in:

1. APOE-ε4 non-carriers and carriers

3. Excluding DLB cases, i.e. in the AD group only

2. APOE-ε4 heterozygotes and homozygotes

Statistical analyses

- All analyses repeated in the ADNI-I sample
 - *N*=198

Meta-analysis of estimates from SDS and ADNI-I performed

- Comparison of prevalence of Cerebral Amyloid Angiopathy in APOE-ε4 carriers and non-carriers
 - *n*=34

Statistical analysis-CFA (SDS)

- Forward and backward Digit Span
- Trails Making test A
- Wisconsin Card Sorting test-perseverative errors
- Phonemic Fluency-FAS
- Digit Symbol substitution Task

- California Verbal Learning Test (CVLT):
 - -Total acquisition score-trials 1-5
 - -long delay free recall
- Wechsler Memory Scale:
 - -immediate &
 - -delayed recall

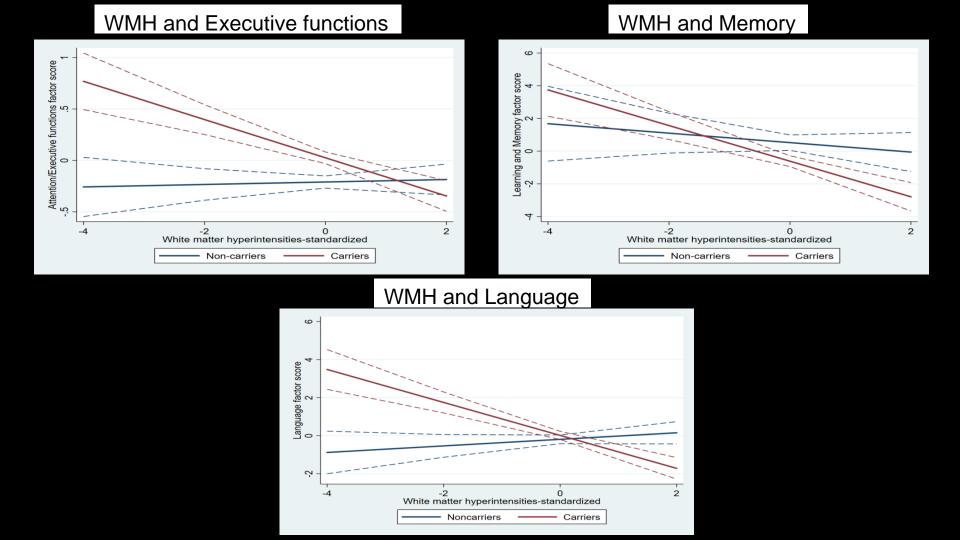
- Boston Naming
- Semantic Fluency
- Phonemic Fluency-FAS

Attention/executive function

Learning and memory

Language

SDS sample characteristics


Characteristics	Descriptives				
	Total sample N=289	APOE-ɛ4 non- carriers	APOE-ε4 carriers	Carriers of 1 APOE-£4	Carriers of 2 APOE-ε4 alleles
	(122+167)	n=122	n=167	allele n=130	n=37
Age (years)	71.1 (9.6)	71.7 (10.5)	70.7 (8.9)	71.1 (9.2)	69.4 (7.7)
Hypertension	101 (35.0)	50 (41.0)	51 (30.1)	44 (33.8)	6 (16.2)
Diabetes mellitus type 2	25 (8.6)	12 (9.8)	13 (7.8)	13 (10)	0
Raw WMH, cm ³	7.5 (10.4)	8.1 (10.4)	7.2 (10.4)	7.5 (10.6)	6.1 (9.5)
TIV adjusted WMH	6.2 (8.4)	6.7 (8.8)	5.8 (8.1)	6.0 (7.9)	5.3 (8.8)
TIV adjusted WMH, median [IQR]	3.1 [1.1-8.1]	3.3 [1.1-8.5]	3.0 [1.0-7.8]	3.4 [1.1-8.5]	2.2 [0.9-5.6]

Values are means (SD), counts (percentage), or medians [inter-quartile range]

WMH and cognition by *APOE*-ε4 carrier status

	Association between WMH and cognition				
	APOE-ε4 non-carrie	rs, n=122	APOE-ε4 carriers, n=167		
Factor	Fully Adjusted Mo	odel	Fully Adjusted Model		
	Difference per SD (95% CI)	P-value	Difference per SD (95% CI)	P-value	
Attention/Executive	0.01 (-0.10, 0.23)	0.895	-0.18 (-0.35, -0.01)	0.034	
Memory	-0.28 (-1.69, 1.14)	0.699	-1.07 (-2.07, -0.08)	0.034	
Language	0.17 (-0.53, 0.86)	0.634	-0.86 (-1.51, -0.21)	0.009	

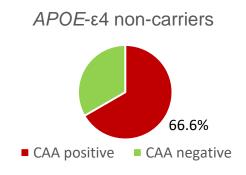
Models are adjusted for age, sex, education, systolic and diastolic blood pressure, diabetes mellitus type 2, smoking status, and the clinical diagnosis of dementia

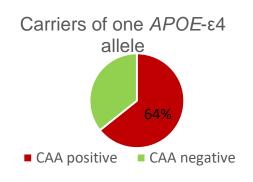
WMH and cognition by allele dosage

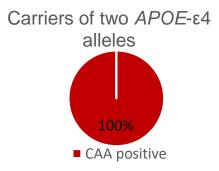
	Association between WMH and cognition				
	Carriers of 1 APOE-ε4 a	allele n=130	Carriers of 2 APOE-ε4 alleles n=37		
Factor	Fully Adjusted Model		Fully Adjusted Model		
	Difference per SD (95% CI)	P-value	Difference per SD (95% CI)	P-value	
Attention/Executive	-0.23 (-0.41, -0.04)	0.016	0.06 (-0.37, 0.49)	0.766	
Memory	-1.39 (-2.51, -0.26)	0.016	0.21 (-2.21, 2.63)	0.857	
Language	-0.90 (-1.59, -0.22)	0.010	0.34 (-2.14, 1.45)	0.698	

Models are adjusted for age, sex, education, systolic and diastolic blood pressure, diabetes mellitus type 2, and smoking status

ADNI results


- APOE-ε4 carriers were younger (homozygous carriers)
- Comparable WMH in carriers and non-carriers
- Higher burden of WMH associated with worse executive function and language
- Both associations driven by heterozygous carriers


Meta-analysis of SDS and ADNI-I estimates


	Association between WMH and cognition				
	APOE-ε4 non-carriers, n=189		APOE-ε4 carriers, n=298		
Factor	Model 2		Model 2		
	Difference per SD (95% CI)	P-value	Difference per SD (95% CI)	P-value	
Attention/Executive	-0.092 (-0.215, 0.031)	0.143	-0.191 (-0.271, -0.112)	2.117x10 ⁻³	
Memory	-0.626 (-1.755, 0.503)	0.277	-1.024 (-1.794, -0.254)	0.009	
Language	-0.032 (-0.550, 0.486)	0.903	-0.749 (-1.191, -0.306)	0.0009	

Neuropathology subsample of SDS

- WMH were indeed associated with worse cognition in APOEε4 carriers
- WMH in APOE-ε4 carriers might be a consequence of Cerebral Amyloid Angiopathy

Summary and comments

- APOE-ε4 influences the association of WMH with executive function and language in dementia patients.
- This association holds irrespective of the clinical dementia diagnosis.
- All associations were driven by the heterozygous group.
- CAA might be the likely etiology of WMH in APOE-ε4 carriers.
- Information on APOE-ε4 status may be useful to understand the relative contributions of different pathologies to an individual's unique dementia syndrome, and to guide therapy as well.

Acknowledgements

Dr. Mario Masellis Dr. Sandra E. Black Dr. Jo Knight Dr. Donald T. Stuss ADNI investigators

