DECREASED WHITE MATTER TRACT INTEGRITY IN ALZHEIMER'S DISEASE WITH SMALL VESSEL DISEASE BURDEN

Sunnybrook

Melissa F. Holmes¹⁻³, Joel Ramirez¹⁻³, Alicia A. McNeely¹⁻³, Gregory M. Szilagyi¹⁻⁴, Christopher J. M. Scott¹⁻³, & Sandra E. Black¹⁻⁶

¹LC Campbell Cognitive Neurology Research Unit, ² Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, ³ Sunnybrook Health Sciences Centre, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ⁴ University of Toronto, Institute of Medical Science, U of T, ⁵ Dept of Medicine (Neurology), U of T

BACKGROUND

- Subcortical White Matter Hyperintensities (WMH) on MRI are commonly used biomarkers of cerebral small vessel disease (SVD) burden that is linked to the progression of dementia and cognitive decline [1-3].
- WMH are typically observed in Alzheimer's disease (AD) and as such are considered an indicator of vasculopathy in AD [1-3].
- Previous studies indicate that decreased activation of the default mode network (DMN) can be used a biomarker for AD, the main WM tract connecting brain regions involved being the cingulum tract (Fig. 2) [4-6].

PURPOSE & HYPOTHESIS

Purpose: To investigate the regional features of WM microstructural integrity and the potential relationship with co-morbid SVD in AD using diffusion tensor imaging (DTI) metrics.

Hypothesis: Microstructural integrity will be impaired within DMN tracts of AD patients with high WMH burden.

METHODS

MRI imaging was acquired on 1.5T GE Signa scanner

- 12 direction DTI (3mm);
- T1-weighted (AX 3D SPGR, 1.2-1.4mm);
- Proton density (PD) and T2-weighted (T2) (interleaved axial dual-echo spin echo, 3mm).

PARTICIPANTS

Participants were selected from Sunnybrook Dementia Study (see Table 1). AD (n=62) patients were dichotomized from the median value of global WMH in the sample (Fig. 1). Normal controls (NC: n=45) were also collected for comparison. Groups were divided as follows:

- AD *low* WMH (WMH: 0.0-3.3cc; n=31) Fig. 1a
- AD high WMH (WMH: 3.8-53.3cc; n=31) Fig. 1b

Fig 1: WMH of the AD groups (a) AD low WMH (b) AD high WMH

IMAGE PROCESSING & ANALYSIS

DTI processing: Tools from the FMRIB Software Library (FSL) was used for all DTI processing [7]. Preprocessing was performed using FDT (FMRIB's Diffusion Toolbox) for eddy current correction, brain extraction and diffusion tensor fitting.

Tract Based Spatial Statistics (TBSS) was used to visualize significant differences (p>0.05) in white matter tract integrity [8]. Alignment of white matter and FA maps were visually inspected by user. White matter tracts were located using the John Hopkins University White Matter Tractography Atlas [9]. WMH Volumetric Data: Tissue and lesion segmentation were obtained using the semi-automated brain region extraction (SABRE) method and Lesion Explorer [10].

RESULTS

Table 1 – Participant demographics and imaging volumetric data

	NC	AD low WMH	AD high WMH	р	significance
Demographic	cs1				
n	45	31	31		
Age, y	69.9(8.0)	68.0(9.5)	76.8(8.6)	0.000	***
Sex, n (%) m	19.0(42.0)	17.0(54.8)	14.0(45.2)	0.448	n.s
Education, y	16.2(3.3)	13.7(3.6)	13.7(3.8)	0.002	**
MMSE/30	26.7(3.3)	25.1(4.6)	25.9(4.1)	0.243	n.s
WMH Volume	etrics1,2,3				
WMH	4.7(6.8)	1.3(1.0)	15.6(14.0)	0.000	***
pWMH	3.9(6.3)	0.9(0.8)	14.0(13.6)	0.000	***
dWMH	0.7(0.7)	0.4(0.3)	1.6(1.4)	0.000	***

Key: WMH=global WMH, pWMH=periventricular WMH, dWMH=deep white WMH:

- ¹ Values reported as mean(SD).
- ² All reported volumes are raw for illustrative purposes; analysis was performed on transformed data.
- ³ Values reported in cubic centimetres.

NC vs AD low WMH

*p>0.05, **p>0.01 ***p>0.001

Fig. 2- The cingulum tract pictured in the John Hopkins University White Matter Tractography Altas in FSLView 4.0.1

AD low WMH vs AD high WMH

a b c

Fig. 3 - FA significance maps between the three groups. Green = non-significant difference in FA. Red-Yellow = significant difference in FA (p>0.05).

NC vs AD high WMH

DISCUSSION

- The cingulum tract showed a decrease in FA when comparing NC to both AD groups (Fig 3a and 3b).
- Furthermore, a significant decrease in FA of the cingulum tract was observed between AD low WMH and AD high WMH (Fig 3c)
- These results may suggest SVD burden in combination with AD could further contribute to decreased microstructural integrity of the cingulum tract and therefore be a potential correlate of decreased activation of the DMN.
- Future research will examine microstructural integrity longitudinally in AD patients with varying SVD burden to examine relationship integrity.

LIMITATIONS

- Though the cingulum tract is spared from overlapping WMH that may influence FA other nodes of the DMN, such as anterior portions of the superior longitudinal fasciculus, may be affected.
- Future research would be required to examine all white matter tracts of the DMN individually.

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from the Canadian Institute of Health Research (MT#13129) and the L. C. Campbell Foundation.

REFERENCES

- 1.Wardlaw et al. (2013). Lancet Neurology.
- 2. E. Smith et al., (2008). Archives of Neurology.
- 3. S. E. Black et al., (2009). *Stroke*.
- 4. Koch et al., (2012). Neurobiology of Aging.
- 5. Greicius et al., (2004). PNAS.
- 6. Van den Heuval et al., (2008). Journal of Neuroscience.
- 7. S.M. Smith et al., (2004). Neurolmage.
- 8. S.M. Smith et al. (2006). Neurolmage.
- 9. Oishi et al., (2009). Neuroimage.
- 10. Ramirez et al., (2011). Neurolmage.

For more information or to download a copy of this poster, please visit *brainlab.ca/posters* or scan this QR code

