VENTRICULAR ENLARGEMENT AS AN OUTCOME MEASURE FOR CLINICAL TRIALS EXAMINING ALZHEIMER'S DISEASE Sunnybrook HEALTH SCIENCES CENTRI Sabrina Adamo^{1,2}, Joel Ramirez^{1,2,3}, Melissa F. Holmes^{1,2}, Fuqiang Gao^{1,2,3}, Sandra E. Black^{1,2,3,4}

HEART & STROKE FOUNDATION Canadian Partnership for Stroke Recovery

¹L.C. Campbell Cognitive Neurology Research Unit, Toronto, Canada; ²Hurvitz Brain Sciences Research Institute, Toronto, Canada; ³Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ³Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ⁴Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ⁴Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ⁴Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ⁴Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ⁴Heart & Stroke Foundation Canadian and Canadian and Canada; ⁴Hurvitz Brain Sciences Research Institute, Toronto, Canada; ⁴Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Canada; ⁴Hurvitz Brain Sciences Research Broundation Canada; ⁴Hurvitz Brain Sciences Research Program, Sunnybrook Research Broundation Canada; ⁴Hurvitz Brain Sciences Research Broundation Broundation Canada; ⁴Hurvitz Brain Sciences Research Broundation Canada; ⁴Hurvitz Brain Sciences Research Broundation Canada; ⁴Hurvitz Brain Sciences Research Broundation Brounda Partnership for Stroke Recovery, Sunnybrook Health Sciences Centre, Toronto, Canada; ⁴Department of Medicine, Division of Neurology, University of Toronto, Toronto, Canada.

BACKGROUND

- Alzheimer's disease (AD) is the most common irreversible cause of dementia.
- In 2016, it has been estimated that over half a million Canadians are living with dementia [1].
- In addition to neuropsychological tests, recent studies on AD and aging suggest that MRIbased biomarkers measuring brain atrophy and small vessel disease burden may be useful indicators to track disease progression in prospective clinical trials of AD [2-3].

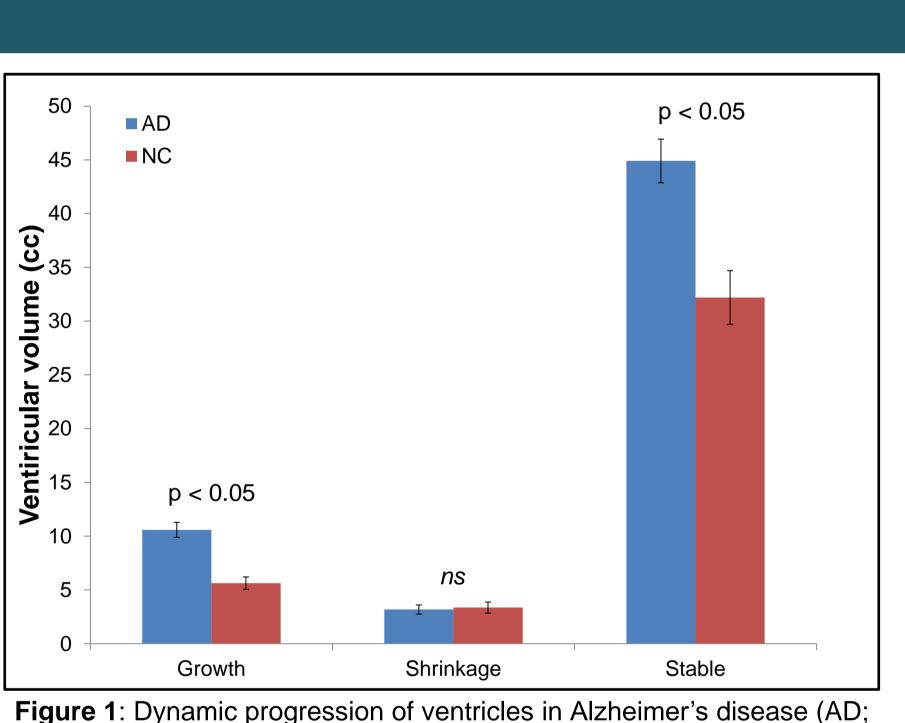
OBJECTIVE

Using established MRI-based biomarkers and a global measure of cognition, our study examined changes in brain atrophy, small vessel disease burden, and cognition, in AD patients and healthy elderly.

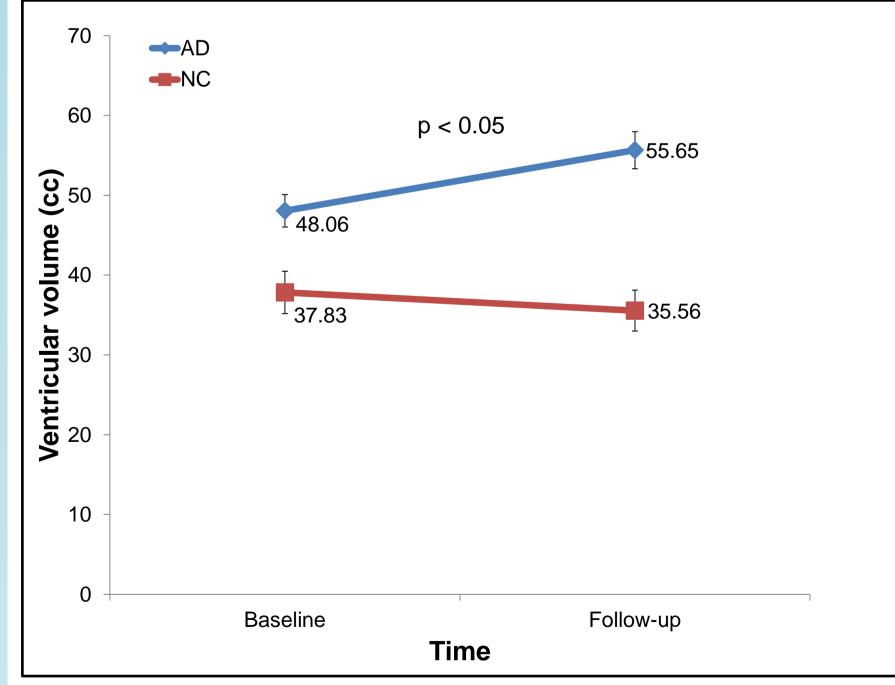
PARTICIPANTS

- Baseline & follow-up MRI and cognitive test scores were obtained from participants enrolled in the Sunnybrook Dementia Study.
- AD patients (n=133) with varying degrees of small vessel disease, who met NINCDS-ADRDA criteria for probable/possible AD dementia [4], and cognitively normal elderly controls (n=47) were examined.

Table 1. Demographics and Volumetrics


	AD	NC	D volue	Cohon's d
	n=133	n=47	P-value	Cohen's d
Demographics				
Age				
Baseline	71.56 (8.61)	70.45 (7.27)	0.43	0.14
Follow-up	73.24 (8.66)	72.2 (7.13)	0.46	0.13
Sex, M/F	57/76	22/25	*0.22	
Education	13.3 (3.54)	15.85 (2.78)	0.00	0.80
MMSE				
Baseline	23.63 (3.84)	28.77 (1.34)	0.00	1.79
Follow-up	19.92 (12.94)	28.64 (1.17)	0.00	0.95
ISI	1.69 (0.87)	1.75 (0.78)	0.67	0.07
Volumetrics				
Ventricles				
Growth	10.59 (8.02)	5.63 (3.89)	0.00	0.79
Shrinkage	3.18 (4.81)	3.36 (3.48)	0.82	0.04
Stable	44.9 (23.37)	32.2 (17.15)	0.00	0.62

Data are presented as Mean (SD) unless otherwise indicated. All volumes are reported in cubic centimeters (cc).


Abbreviations: AD, Alzheimer's disease; NC normal control; MMSE, mini-mental state examination; ISI, interscan interval. *chi square test

METHODS

- Cognition was measured using the Mini-Mental State Examination (MMSE) at both time points.
- Small Vessel Disease was assessed using periventricular (pWMH) and deep white matter hyperintensity (dWMH) volumes (See Fig 4).
- Baseline and follow up MRI (mean ISI=1.7yrs) was acquired using a 1.5T GE Signa scanner
- Changes in MRI-based biomarkers measured at both time points were assessed using a previously validated dynamic volumetric progression method [5].
- An analysis of covariance (ANCOVA) was used for group comparisons of the dynamic progression metrics and partial Pearson r correlations were used to examine the relationship between changes in atrophy, small vessel disease, and cognition.
- All analyses accounted for age at baseline, sex, and years of education.

n=133) and normal controls (NC; n=47) after 1.7 years. Data are presented as mean ± SEM.

ollow-up. Time 1

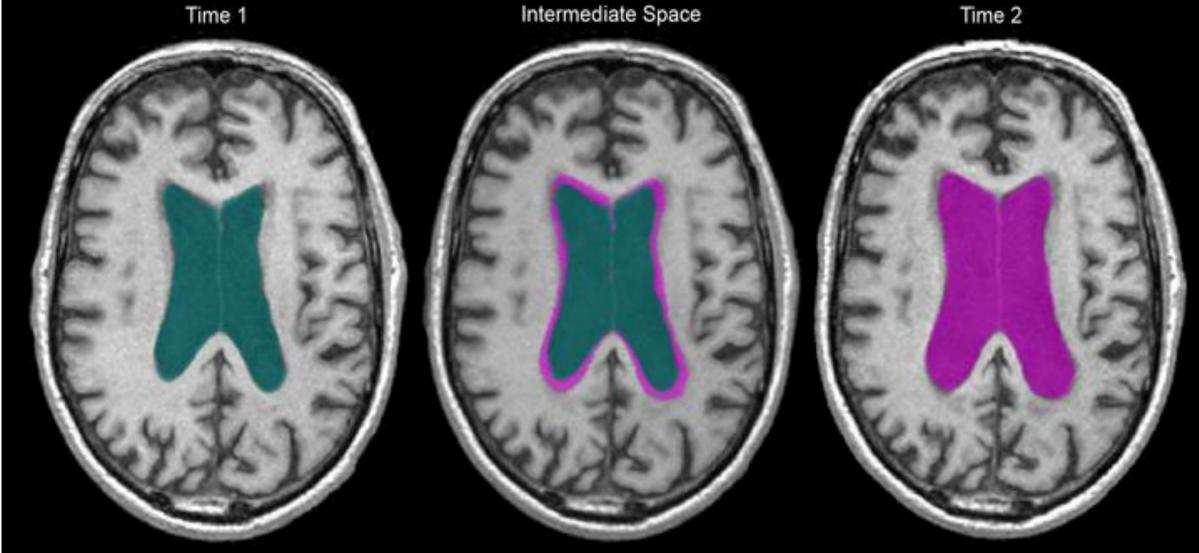


Figure 5: Two year ventricular expansion in a 60 year old man living with AD. Baseline vCSF = 83.6 cc, follow-up vCSF = 119.0 cc. Green indicates baseline vCSF voxels, pink indicates follow-up (right) and growth (middle). WMH within vCSF growth regions were subsequently removed to account for ventricular expansion.

Figure 2: Mean (± SEM) ventricular change in Alzheimer's disease (AD; n=133) and normal controls (NC; n=47) after ~1.7 years.

- Dynamic progression analyses revealed that in just under 2 years, AD patients exhibited significant increases in vCSF volume compared to normal elderly (p<0.0001; Fig 2). • Pearson r analyses revealed vCSF volume growth was significantly correlated with pWMH (r=0.4, p < 0001) but not dWMH (n.s.).
- Additionally, vCSF volume growth exhibited a moderate correlation with change in MMSE score (r=0.372, p<0.0001) over the same time period.

Brain Atrophy was assessed using ventricular cerebral spinal fluid (vCSF) volumes.

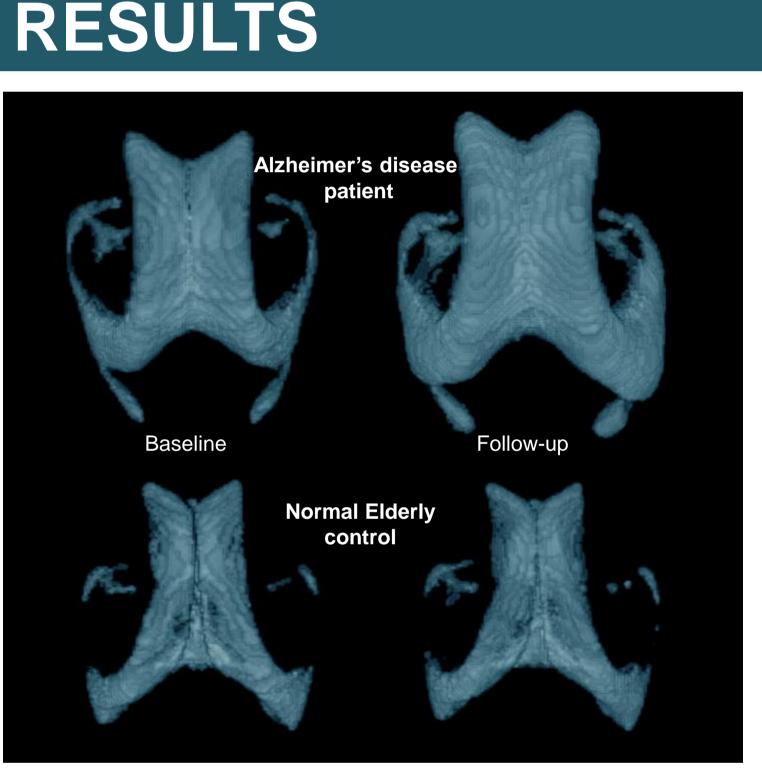


Figure 3: Shows top view of 3D volume surface renders of ventricles from an Alzheimer's disease patient (top) and a normal elderly control (bottom). Left images show ventricles at baseline scanning and right images show after 1 year

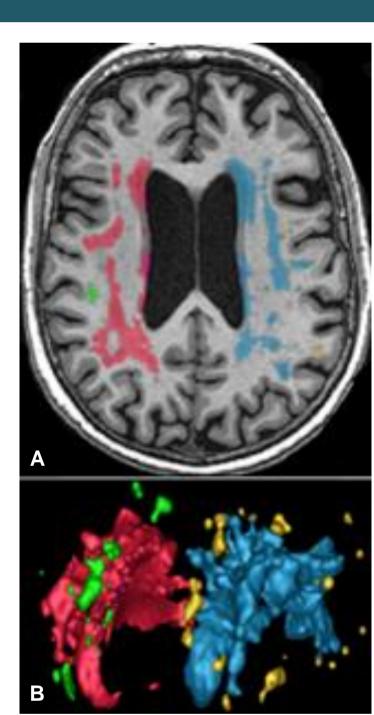


Figure 4: dWMH in green & yellow and pWMH in red & blue. (A) Axial T1 (B) 3-D volume rendering of WMH segmentation.

- [2].

Co-authors gratefully acknowledge funding support from the CIHR, Linda C. Campbell Foundation, and the Heart & Stroke Foundation Canadian Partnership for Stroke Recovery. JR receives salary support from the Canadian Vascular Network, Ontario Brain Institute, and the Ontario Neurodegenerative Disease Research Initiative. SEB receives financial support from the Dept of Medicine Sunnybrook HSC, the Sunnybrook Research Institute, Brill Chair in Neurology from the University of Toronto, and as Executive Director of the Toronto Dementia Research Alliance.

1.	Alzł
2.	Nes
3.	Ituri
4.	Mcł
5.	Rar
6.	Edv

Foi	
dov	
pos	
bra	
this	
this	

Neuroscience Program

CONCLUSIONS

• As expected, patients with AD showed a greater progression of ventricular atrophy compared to cognitively normal elderly (Fig 1)

• Additionally, vCSF expansion in AD patients from their baseline to follow up scans was consistent with their small vessel disease burden and decline in cognition (Fig 2).

 The findings from our study suggest that changes in ventricular expansion is a promising biomarker that may be used as viable outcome measure for clinical trials exploring novel treatments aimed at halting progression and improving cognitive outcome. In addition to standard cognitive testing, novel treatment strategies such as the use of antihypertensives, may use our MRI-based progression results as a useful tool to assess treatment outcomes [6].

ACKNOWLEDGEMENTS

REFERENCES

cheimer Society Canada (2016) Report on Dementia. stor et al. (2008). *Brain*. rria-Medina et al. (2016). Nature Comm. Khann et al. (2011). Alzheimer's Dement. mirez et al. (2016). Front. Aging Neurosci. wards et al. (2017). J. Alzheimers. Dis.

r more information or to wnload a copy of this ster, please visit ainlab.ca/posters or scan s QR code

