AMYLOID BINDING IS ASSOCIATED WITH MARKERS OF WHITE MATTER MICROSTRUCTURE IN PATIENTS WITH SIGNIFICANT WHITE MATTER DISEASE

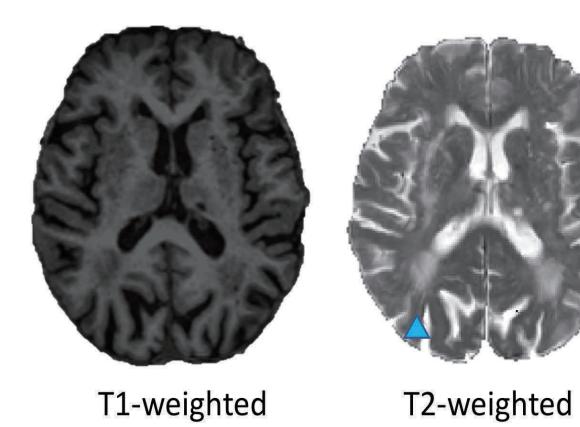
Maged Goubran¹, Miracle Ozzoude¹, Sabrina Adamo¹, Katherine Zukotynski², Christian Bocti⁴, Michael Borrie³, Howard Chertkow⁵, Richard Frayne⁶, MITNEC C6 Fuqiang Gao¹, Robin Hsiung⁷, Alex Kiss¹, Robert Jr. Laforce⁸, Michael D. Noseworthy⁴, Frank S. Prato³, Joel Ramirez¹, Jim D. Sahlas², Christopher Scott¹, Eric E. Smith⁹, Vesna Sossi⁷, Stephen Strother¹², Richard Swartz¹, Jean-Claude Tardif¹¹, Alex Thiel⁴, Jean-Paul Soucy¹⁰, Sandra E. Black¹

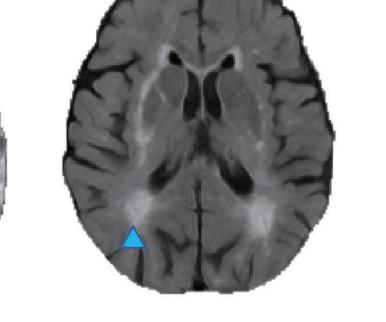
Sunnybrook HEALTH SCIENCES CENTR

¹Sunnybrook Research Institute, ²McMaster University, ³Western Université de Sherbrooke, ⁵Jewish General Hospital, ⁶University of Calgary, ⁷University of British Columbia, ⁸Université Laval, ⁹Hotchkiss Brain Institute, ¹⁰Montreal Neurological Institute, ¹¹Montreal Heart Institute, ¹²Rotman Research Institute

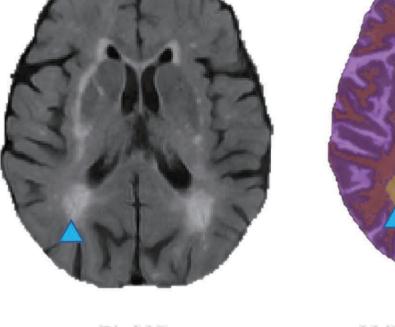
Background

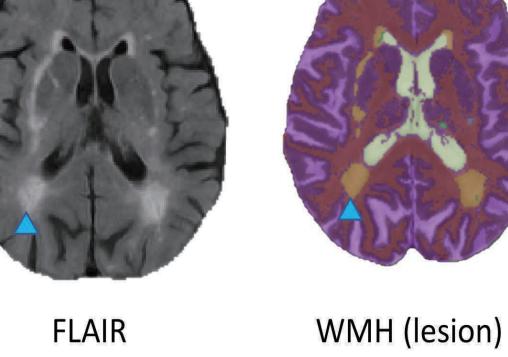
- White matter hyperintensities (WMH) may contribute to cognitive impairment
- WMH may reflect demyelination or vasogenic edema or both
- Non-specific WM binding of 18F-Florbetapir may depend on the myelination

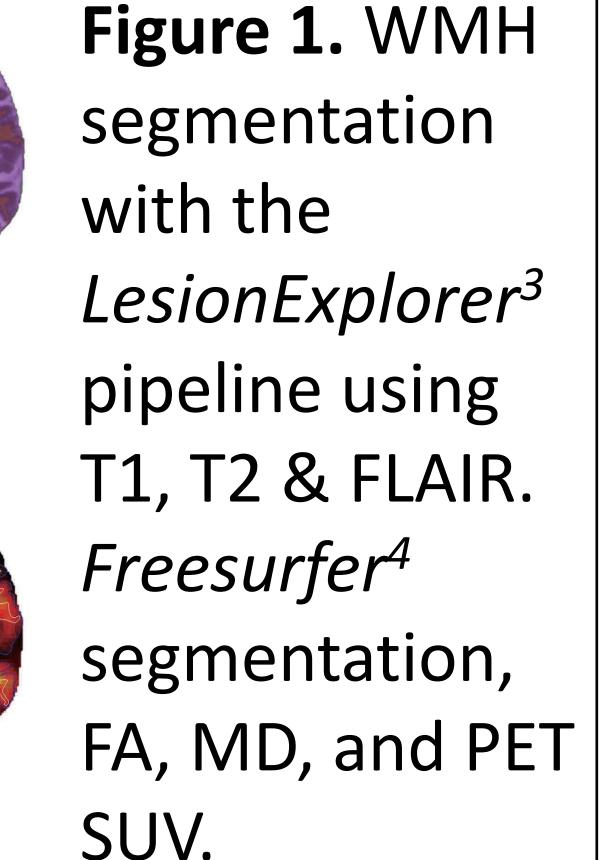

Objective


To determine if amyloid deposition in WM is associated with diffusion tensor imaging (DTI) changes in a population with significant WMH

status of the WM tracts^{1,2}

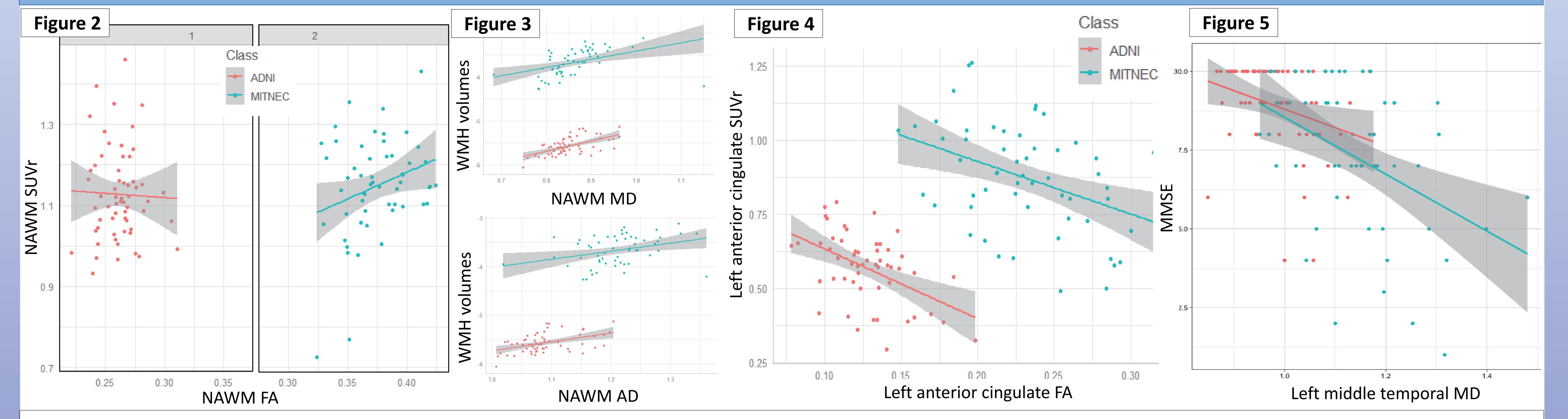

Methods


- <u>Participants</u>: 56 patients with significant burden of WMH recruited from TIA and dementia clinics & 60 ADNI normal controls
- Measures: 3T MRI including DTI, 18F-Florbetapir PET/CT, and MMSE
- Computed Standardized uptake value ratios (SUVr) normalized to the pons
- Fractional anisotropy (FA) and mean diffusivity (MD) were normalized by whole brain metrics (FA/MD).
- Multiple linear regression and partial correlations, adjusting for age, between PET, DTI and WMH metrics, corrected for multiple comparisons using FDR



MD

Freesurfer parcellations


T1-weighted +

FA

SUV + tissue delineations

segmentation

Results

• NAWM SUVr was associated with FA (B=1.5, p=0.016) and negatively associated with MD (B=-0.86, p=0.03) in patients with high WMH burden (MITNEC

- participants) but not in those with low WMH burden (ADNI) (Fig 2)
- NAWM diffusivity metrics (MD and AD) were negatively associated with WMH volumes in both groups (B=-154.19, p=0.02) (Fig 3)
- In the cortex, FA predicted amyloid load (SUVr) in the left anterior cingulate (Fig 4)
- MMSE was negatively associated with MD (B=-7.8, p<0.001) and SUVr (B=-2.4, p=0.001) in the left middle temporal cortex (Fig 5)

<u>Conclusion</u>	<u>References</u>		
Non-specific WM amyloid binding may reflect microstructural integrity (myelination status) in patients with high WMH load. Future work to analyze involved WM networks and free water diffusion.	 Provenzano et al. (2013). JAMA Neurol. Gordon et al. (2015). Neuroimage Clin. Fischl. (2012). Neuroimage. Ramirez et al. (2010). Neuroimage. 	maged.goubran@sunnybrook.ca To download a copy of this poster scan this QR code	