Jueen's UNIVERSITY OF TORONTO Vaccarino, S.^{1,2}, Scott, C.J.M.^{1,3,4,5}, Ramirez, J.^{1,3,4,5}, Holmes, M.^{1,3,4,5}, McNeely, A.A.^{1,3,4,5}, Honjo, K.^{1,3,4,5}, Gao, F.^{1,3,4,5}, Black, S.E.^{1,3,4,5,6}

Visual analysis of fractional anisotropy and mean diffusivity of white matter tracts in

stroke patients using tract-based spatial statistics

Sunnybrook Health Sciences Centre, Toronto, Canada¹ Queen's University, Faculty of Arts & Sciences, Life Sciences² LC Campbell Cognitive Neurology Research Unit³ Heart & Stroke Foundation Canadian Partnership for Stroke Recovery⁴ Brain Sciences Research Program, Sunnybrook Research Institute⁵ University of Toronto, Institute of Medical Sciences, Faculty of Medicine⁶

HEART & STROKE FOUNDATION Canadian Partnership for Stroke Recovery

BACKGROUND

- Diffusion Tensor Imaging (DTI) is an MRI-based neuroimaging technique that provides a visual representation of white mater tracts by mapping water diffusion *in vivo*
- Previous studies have shown that FA increases from baseline in the first 2 years poststroke¹ and MD increases slightly at the chronic stage²
- Fractional anisotropy (FA) measures the degree of directionality of water movement, with a higher FA value indicating a more intact white matter tract

PARTICIPANTS

- 68 stroke patients whose data was collected from a study funded by the National Institute of Health, conducted at Sunnybrook Health Sciences Centre, Toronto (n=45) and the Chicago Medical Center (n=23)
- 27 normal control subjects collected from the FIBA study conducted at Sunnybrook Health Sciences Centre
- Radial diffusivity (RD) measures water diffusion lateral to the main tract direction
- Mean diffusivity (MD) is the vector sum of all water directions

PURPOSE

To understand the effects of stroke on white matter tracts, especially how the hemisphere contralateral to stroke location is affected in terms of FA, MD, and RD

METHODS

- FA, MD, and RD maps were generated using FMRIB's Diffusion Toolbox, part of FSL^{3,4,5,7,8,9,10}
- Voxelwise statistical analysis of FA, MD, and RD data was carried out using TBSS, part of FSL^{4,6} which allows voxel-by-voxel comparison of white matter tracts between patients and controls
- Stroke subgroups were analyzed in comparison to controls using visual analysis
- White Matter Tracts were identified using the John Hopkins atlas

Anterior corona radiata

RESULTS

nferior fronto-occipital

	Tah	le 1 - Der	nogranl	hics				
	n	Age (SD)	Sex (% males)	YOE (SD)	days post stroke (SD)		LEGEND: INTE	RPRETING DTI IMAGES
Stroke	68	64.2 (12.7) ^a	55.9 ^b	14.5 (3.2)ª	435.9 (248.9)	FRACTIONAL ANISOTROPY	Green	- Not significant
Normal Controls	27	70.3 (6.8)	44.4	16.2 (3.1)	N/A	 In patients with right hemispheric stroke it was found that there was an 	Yellow, Red,	- Significant difference betweer
Left Stroke	19	67.7 (14.3)	52.6	14.8 (2.9)	431.3 (137.1)	increase in FA on the contralateral (left) hemisphere	Orange	patients and controls
Right Stroke	21	61.3 (9.8)	66.7	14.3 (2.9)	431.8 (373.8)			
Bilateral Stroke	24	65.6 (13.6)	45.8	14.3 (3.7)	400.1 (192.4)	-Forceps minor		—— Forceps minor

fasciculus

Left Frontal Stroke	10	64.3 (14.8)	40.0	14.5 (2.8)	432.4 (148.2)
Right Frontal Stroke	9	60.1 (9.7)	77.8	14.9 (2.7)	441.2 (209.6)
Bilateral Frontal Stroke	17	63.9 (13.9)	47.1	13.3 (2.8)	432.3 (215.4)
Other Stroke (non-frontal, non-subcortical)	24	67.9 (12.9)	58.3	15.2 (3.4)	337.8 (232.7)

52.8

14.0 (2.8)

63.1 (13.0)

^a Significantly different than controls, p<0.05 ^b Not significantly different than controls, $x^{2}(1)=0.31$

36

right stroke FA control < patients, p < 0.05

right stroke FA, control < patients, p < 0.05

External capsule -Sagittal stratum

Anterior corona radiata

right stroke FA control < patients, p < 0.05

MEAN DIFFUSIVITY

Frontal Stroke

• Patients had an increase in MD in both hemispheres when stroke was contained to one region

Left stroke MD control < patients, p < 0.05

434.6 (192.1)

Right stroke MD control < patients, p < 0.05

Bilateral stroke MD control < patients, p < 0.05

Frontal stroke MD control < patients, p < 0.05

Left frontal stroke MD control < patients, p < 0.05

Right frontal stroke MD control < patients, p < 0.05

Other stroke MD

RADIAL DIFFUSIVITY

 Patients had an increase in RD in both hemispheres when stroke was contained to one region

Left stroke RD control < patients, p < 0.05

Right stroke RD

control < patients, p < 0.05

Bilateral stroke RD control < patients, p < 0.05

Frontal stroke RD control < patients, p < 0.05

Left frontal stroke RD control < patients, p < 0.05

Right frontal stroke RD control < patients, p < 0.05

Bilateral frontal stroke RD control < patients, p < 0.05

Other stroke RD control < patients, p < 0.05

DISCUSSION

- This study suggests that stroke contained in one hemisphere can lead to changes in the microstructural integrity of the contralateral hemisphere
- The white matter integrity may improve in the hemisphere contralateral to stroke, possibly to compensate for the integrity loss in the ipsilateral hemisphere
- The increase in RD may be the main cause for the increase in MD, meaning stroke may increase lateral water diffusion throughout the white matter tracts of the brain

ACKNOWLEDGEMENTS

We gratefully acknowledge financial support from the National Institute of Health, the L. C. Campbell Foundation, and The Heart and Stroke Foundation Centre for Stroke Recovery.

- C. Wang, G.T. Stebbins, D.L. Nyenhuis, L. deToledo-Morrell, S. Freels, E. Gencheva, L. Pedelty, K. Sripathirathan, M.E. Moseley, D.A. Turner, J.D.E. Gabrieli, and P.B. Gorelick. Longitudinal changes in white matter following ischemic stroke: A three-year follow-up study. Neurobiology of Aging, 27:1827-1833, 2006.
- C. Yu, C. Zhu, Y. Zhang, H. Chen, W. Qin, M. Wang, and K. Li. A longitudinal diffusion tensor imaging study on Wallerian degeneration of corticospinal tract after motor pathway stroke.
- 3. H. Johansen-Berg, T.E.J. Behrens, M.D. Robson, I. Drobnjak, M.F.S. Rushworth, J.M. Brady, S.M. Smith, D.J. Higham, and P.M. Matthews. Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. Proc Natl Acad Sci U S A, 101(36):13335-13340, 2004.
- M. Jenkinson, C.F. Beckmann, T.E. Behrens, M.W. Woolrich, S.M. Smith. FSL. NeuroImage, 62:782-90, 2012
- 5. S. Jbabdi, S.N. Sotiropoulos, A. Savio, M. Grana, T.E.J. Behrens. Model-based analysis of multishell diffusion MR data for tractography: How to get over fitting problems. Magn Reson Med, doi: 10.1002/mrm.24204, 2012.
- 6. S.M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T.E. Nichols, C.E. Mackay, K.E. Watkins, O. Ciccarelli, M.Z. Cader, P.M. Matthews, and T.E.J. Behrens. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. NeuroImage, 31:1487-1505, 2006.
- 7. S.N. Sotiropoulos, I. Aganj, S. Jbabdi, G. Sapiro, C. Lenglet, T.E.J. Behrens. Inference on Constant Solid Angle Orientation Distribution Functions from Diffusion-Weighted MRI, p. 609, OHBM, Canada, 2011.
- 8. T.E.J. Behrens, H. Johansen-Berg, M.W. Woolrich, S.M. Smith, C.A.M. Wheeler-Kingshott, P.A. Boulby, G.J. Barker, E.L. Sillery, K. Sheehan, O. Ciccarelli, A.J. Thompson, J.M. Brady, and P.M. Matthews. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7):750-757, 2003.
- T.E.J. Behrens, H. Johansen-Berg, S. Jbabdi, M.F.S. Rushworth, and M.W. Woolrich. Probabilistic diffusion tractography with multiple fibre orientations. What can we gain? NeuroImage, 23:144-155, 2007
- 10. T.E.J. Behrens, M.W. Woolrich, M. Jenkinson, H. Johansen-Berg, R.G. Nunes, S. Clare, P.M. Matthews, J.M. Brady, and S.M. Smith. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med, 50(5):1077-1088, 2003.

For more information or to download a copy of this poster, please visit brainlab.ca/posters or scan this QR code.

