
RELATIONSHIP BETWEEN AMYLOID LOAD, WHITE MATTER MICROSTRUCTURE AND COGNITIVE PERFORMANCE IN PATIENTS WITH SIGNIFICANT WHITE MATTER DISEASE

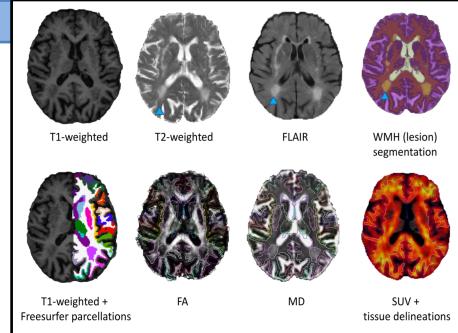
Maged Goubran ¹, Katherine Zukotynski², Sabrina Adamo¹, Michael Borrie³, Christian Bocti⁴, Howard Chertkow⁵, Richard Frayne⁶, Fuqiang Gao¹, Robin Hsiung⁷, Alex Kiss¹, Robert Jr. Laforce⁸, Michael D. Noseworthy⁴, Miracle Ozzoude¹, Frank S. Prato³, Joel Ramirez¹, Jim D. Sahlas², Christopher Scott¹, Eric E. Smith⁹, Vesna Sossi⁷, Alex Thiel⁴, Jean-Paul Soucy¹⁰, Jean-Claude Tardif¹¹,

FACULTY OF MEDICINE

¹Sunnybrook Research Institute, ²McMaster University, ³Western University, ⁴Université de Sherbrooke, ⁵Jewish General Hospital, ⁶University of Calgary, ⁷University of British Columbia, ⁸Université Laval, ⁹Hotchkiss Brain Institute, ¹⁰Montreal Neurological Institute, ¹¹Montreal Heart Institute

Background

UNIVERSITY OF TORONTO


- White matter hyperintensities (WMH) is thought to contribute to cognitive impairment ^{1,2}
- WMH may reflect demyelination or vasogenic edema
- Non-specific WM binding of 18F-Florbetapir may depend on the myelination status of the WM tracts

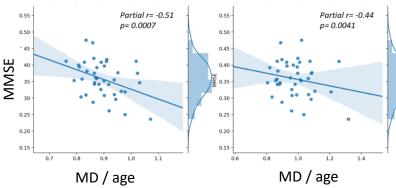
Objective

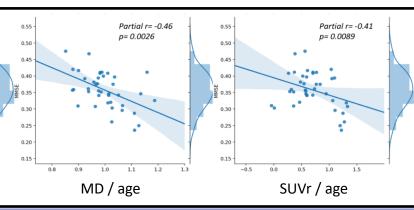
To determine if amyloid deposition in WM is associated with diffusion tensor imaging (DTI) changes in a population with significant WMH

Methods

- Patients: 45 patients & 45 ADNI normal controls
- <u>Measures</u>: 3T MRI including DTI, 18F-Florbetapir PET/CT, and MMSE
- Computed Standardized uptake value ratios (SUVr) normalized to the pons
- Fractional anisotropy (FA) and mean diffusivity (MD) were normalized by whole brain FA/MD
- Multiple linear regression and partial correlations, adjusting for age, between PET, DTI and WMH metrics
- Corrected for multiple comparisons using FDR

Figure 1. WMH segmentation with the *LesionExplorer*³ pipeline using T1, T2 & FLAIR. *Freesurfer*⁴ segmentation, FA, MD, and PET SUV.


MITNEC ADNI 1.6 pearsonr = 0.39; p = 0.014 1.7 pearsonr = 0.063; p = 0.69 1.8 pearsonr = 0.063; p = 0.69 1.9 pearsonr = 0.063; p = 0.69 1.9 pearsonr = 0.063; p = 0.69 1.9 pearsonr = 0.082; p = 0.69 1.1 pearsonr = 0.082; p = 0.6 MD MD MD


Results

- WM amyloid load correlated with FA (r=0.39) & inversely correlated with MD (r=-0.35) in high WMH load patients but not in ADNI controls
- NAWM FA predicted WMH volumes (B=-5.7e04, p < 0.001)
- Normalized FA was decreased and MD increased for high WMH volumes patients compared to controls (p < 0.0001, p < 0.001)
- MMSE was negatively correlated with MD in the left medial temporal regions & SUVr in the left paracentral gyrus (r > -0.40)

Figure 2. Partial correlations of AV-45 SUVr and normalized DTI metrics, adjusting for age, in the cerebral white matter for both patient populations.

Figure 3. MMSE partial correlations with imaging: MD in the left medial temporal lobe and precuneus cortex, and SUVr in the paracentral gyrus.

Conclusion

Non-specific WM amyloid binding may reflect microstructural integrity (myelination status) in patients with high WMH load. Future work to analyze involved WM networks & GM uptake.

References

- 1. Provenzano et al. (2013). JAMA Neurol.
- 2. Gordon et al. (2015). Neuroimage Clin.
- 3. Fischl. (2012). Neuroimage.
- 4. Ramirez et al. (2010). Neuroimage.

maged.goubran@sunnybrook.ca
To download a copy of this poster
scan this QR code

