ALZHEIMER'S ASSOCIATION INTERNATIONAL CONFERENCE® JULY 16-20 > LONDON, ENGLAND

Fronto-subcortical hypoperfusion in presymptomatic FTD is associated with behavioral measures, but not cognitive deficits – the GENFI study

Saira S. Mirza on behalf of the Genetic FTD Initiative, GENFI.

Supervisor: Dr. Mario Masellis

Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute; Department of Medicine, Division of Neurology,

University of Toronto

Nothing to disclose

FRONTO-TEMPORAL DEMENTIA(S)-FTD

alzheimer's Ω association*

AAIL>17

- A group of rare neurodegenerative disorders
- Age of Onset 45 to 65 years
- Frontotemporal Atrophy

- Primarily affecting frontal and temporal lobes
 - Behavioral variant (bvFTD)
 - Primary progressive aphasia (PPA)
 - Semantic variant of PPA
 - Non-fluent variant of PPA
 - Disturbances of motor function-ALS or parkinsonism

Seelaar et al. 2011; Onyike and Diehl-Schmid 2013; Gorno-Tempini et al. 2011

Rohrer et al. 2009; Mackenzie et al. 2010; DeJesus-Hernandez et al. 2011; Gasca-Salas et al. 2016

AAIC 17 PRESYMPTOMATIC MUTATION CARRIERS

GENFI GENETIC FTD INITIATIVE

- Presymptomatic mutation carriers a very important group to understand the long preclinical phase of FTD
- In presymptomatic mutation carriers of these genes, identifying (Imaging) biomarkers of disease before the onset of clinical symptoms is crucial
 - To predict disease onset
 - To monitor disease progression, and
 - To guide use of future disease modifying therapies

alzheimer's Rb association*

IMAGING AND PRESYMPTOMATIC FTD

- Volumetric Magnetic Resonance Imaging (MRI) volume changes e.g. atrophy Rohrer et al. 2015
- 18F-Fluorodeoxyglucose Positron Emission tomography (FDG-PET) hypometabolism Jacova et al. 2013
- Resting-state functional MRI information on functional networks Premi et al. 2014
- Diffusion Tensor Imaging (DTI) structural connectivity of white matter Dopper et al. 2013
- Arterial Spin Labelling (ASL) cerebral perfusion
 Dopper et al. 2016
 - Increasing evidence suggests that perfusion changes precede structural brain changes in FTD

alzheimer's R association[•]

AIMS AND OBJECTIVES

- In pre-symptomatic family members of FTD cases [non-carriers: n=100; carriers: n=95 (*MAPT*=17, *GRN*=48, *C9orf72*=30)], we aimed to:
 - I. Explore differences in cerebral perfusion in mutation-carriers compared to non-carriers in same families utilizing Arterial Spin Labeling MRI data
 - II. Investigate if differences in perfusion (if any) identified in aim I are associated with cognitive or behavioral measures

alzheimer's P association*

alzheimer's R association⁴ STUDY POPULATION AND ASSESSMENTS

Presymptomatic family members of FTD cases, N=195 [100 non-carriers; 95]

carriers (MAPT=17, GRN=48, C9orf72=30)]

- Cerebral perfusion data MMSE
- Cognitive measures
- Behavioural measures

- Global cognition:
- Executive function: Trail making test A & B
- Language
 Boston Naming & Verbal Fluency
- Memory Logical memory-Immediate and delayed recall
- Working memory
 Forward and backward digit span

Cambridge Behavioural Inventory-CBI

- Memory and orientation
- Everyday skills
- Self-care
- Abnormal behaviour
- Mood
- Beliefs
- Eating habits and sleep
- Stereotype and motor behaviours
- Motivation

alzheimer's R association'

CEREBRAL (HYPO)PERFUSION-ASL

Aim I: To explore

- Cerebral perfusior
- In a voxel-based a mutation carriers
- Linear mixed mod
 - Account for
 - Fixed effect <u>YAO*mutati</u>
 - YAO=age of
 - Analyses ad
- Regions of hypope on VBA, and then

ASSOCIATION OF CEREBRAL HYPOPERFUSION WITH COGNITION AND BEHAVIOUR

Aim II: Investigate if regional hypoperfusion in regions of interest (ROIs) identified in aim I is associated with cognitive or behavioral measures

- To test associations of the identified ROIs of cerebral hypoperfusion with cognitive and behavioral measures, we used:
 - Multiple linear regression models
 - Adjusted for age, sex, and education
- First, we tested interactions between cerebral perfusion and mutation carrier-status in analyses of ROIs with both cognitive and behavioural measures
- Second, analyses were repeated stratified for carrier status (carriers and non-carriers) and subsequently stratified on mutation: MAPT=17, GRN=48, C9orf72=30)

alzheimer's & association*

AAIC 17 RESULTS I-REGIONS OF HYPOPERFUSION

- Six regions of interest (ROIs) of cerebral hypoperfusion in carriers compared to noncarriers were identified named according to their overlap with the Harvard-Oxford atlas 35
 b) Labels for bilaterally merged clusters as used in post-hoc ROI analysis
- C1: Paracingulate gyri (B)
- C2: Orbitofrontal gyrus/insula (B)
- C3: Frontal pole (R)
- C4: Putamen (L)
- C5: Frontal pole (L)
- C6: Middle, Inf, and Sup frontal gyri (R)

B: bilateral; R: right; L: left

alzheimer's RESU AAIC 217 AND

RESULTS II-CEREBRAL HYPOPERFUSION AND COGNITION

- When testing perfusion in identified ROIs with cognitive tests:
 - We did not find any associations between cerebral perfusion and cognitive test scores in any ROIs in mutation carriers or non-carriers

alzheimer's R association[•]

RESULTS II-CEREBRAL HYPOPERFUSION AND BEHAVIOUR

	CBI TOTAL SCORE, Difference (95% confidence interval) P-value				
	Non-carriers n=100	All carriers n=95	C9ORF72 n=30	PGRN n=48	MAPT n=17
Paracingulate (B)	-0.01 (-0.06, 0.04)	0.16 (0.08, 0.23)	0.03 (-0.08, 0.14)	0.03 (-0.08, 0.14)	0.33 (-0.19, 0.47)
	0.59	< 0.001	0.56	0.54	< 0.001
Orbitofrontal/insula	-0.005 (-0.05, 0.04)	0.10 (-0.002, 0.18)	-0.04 (-0.16, 0.07)	-0.02 (-0.15, 0.10)	0.36 (0.07, 0.65)
(B)	0.83	0.056	0.42	0.70	0.02
Frontal pole (R)	0.02 (-0.01, 0.07)	0.14 (0.06, 0.22)	-0.01 (-0.11, 0.09)	0.07 (-0.04, 0.19)	0.35 (0.17, 0.54)
	0.25	<0.001	0.84	0.21	0.001
Putamen (L)	-0.01 (-0.09, 0.07)	0.20 (0.06, 0.34)	-0.006(-0.19, 0.18)	0.04 (-0.15, 0.23)	0.76 (0.30, 1.21)
	0.80	0.006	0.95	0.68	0.003
Frontal pole (B)	0.02 (-0.03, 0.06)	0.14 (0.06, 0.22)	-0.03 (-0.14, 0.08)	0.08 (-0.03, 0.19)	0.41 (0.23, 0.60)
	0.46	<0.001	0.61	0.15	< 0.001
Middle, inferior, and superior frontal gyri (R)	0.02 (-0.03, 0.06) 0.43	0.13 (0.06, 0.21) <0.001	-0.01 (-0.10, 0.08) 0.82	0.03 (-0.08, 0.15) 0.53	0.36 (0.22, 0.49) < 0.001

All estimates are adjusted for age, sex, and education

alzheimer's R association^{*} CONCLUSION

- Cerebral hypoperfusion within frontal-subcortical regions in presymptomatic FTD is associated with early behavioral changes but not cognitive deficits.
- This may be consistent with the natural history of FTD which most commonly shows behavioural dysregulation as an early feature.
- The current approach uses an ROI analysis.
- Future work will look at a direct voxel-based analyses associating perfusion with CBI and neuropsychological test scores.

alzheimer's R association*

ACKNOWLEDGEMENTS

Elizabeth Finger

Martin N Rossor

Sebastien Ourselin

Jonathan D Rohrer

GENFI Participants

Sandro Sorbi

Alexandre Mendonça

- Mario Masellis
- Henk-Jan Mutsaerts
- Bradley MacIntosh
- David M. Cash
- Martina Bocchetta
- David Thomas
- Katrina M Dick
- John van Swieten
- Barbara Borroni
- Daniela Galimberti
- Maria Carmela Tartaglia
- James Rowe
- Caroline Graff
- Fabrizio Tagliavini
- Giovanni Frisoni
- Robert Laforce Jr

UK Medical Research Council The Italian Ministry of Health Alzheimer Society

CIHR

IRS(

RESEARCH INSTITUTE

