Venous collagenosis: a pathological correlate of white matter hyperintensities
Gayathiri Balasubramaniam1, Sandra E. Black2,6, Joel Ramirez2,3, Fuqiang Gao2,3, Alicia McNeely2,3, Courtney Berezuk2,3, Christopher Scott2,3, Alex Kiss4, Raza Noor5, Kelvin Au4, Julia Keith1,6

Department of Anatomic Pathology1, LC. Campbell Cognitive Neurology Research Unit2, Heart and Stroke Foundation Canadian Partnership for Stroke Recovery3, Hurvitz Brain Sciences Program, Sunnybrook Research Institute4, Departments of Medicine (Neurology)1, University of Toronto2, Toronto, Ontario, Canada

BACKGROUND
• White matter hyperintensities (WMH) are biomarkers for cerebral small vessel disease, which has a prominent role in stroke, dementia and aging.1,2
• Pathological correlates of WMH include myelin loss, activated microglia and arteriolar disease.3
• A few small studies describe collagenosis of the deep medullary veins as being involved WMH pathogenesis.3
• As periventricular WMH become larger and confluent, periventricular infarcts (PVIs) may form

Purpose:
➢ To use an image-pathology correlative study to explore a potential relationship between WMH and venous collagenosis

METHODS

Participants:

WMH Cohort
• Autopsy confirmed AD patients (n=22)
• Controls (n=18) without neurodegenerative phenomena at autopsy

PVI Cohort
• Subjects (n=6) were part of the Sunnybrook Dementia Study
• All had a pathologic diagnosis of AD
• 12 PVIs were identified on imaging

Tissue Pathology:

WMH Cohort
• Tissue blocks were obtained (Figure 1); 66 from the AD cases and 54 from Controls
• Blocks were embedded in paraffin, cut into 4 μm thick sections, and stained with H&E/LFB and Masson's trichrome

PVI Cohort
• MRIs were used to localize PVIs in formalin-fixed coronally sectioned archived cadaveric brain tissue; 30 blocks were created from 12 PVIs
• Tissue blocks were embedded in paraffin, cut into 5 μm sections, and stained with
 • H&E/LFB
 • Masson's trichrome
 • immunohistochemistry for GFAP, CD68 and neurofilament

Assessing Venous Collagenosis in the WMH and PVI cohort
• % stenosis of large veins (% lvs): [external diameter - internal diameter]/external diameter X 100 on trichrome
• Venous collagenosis severity in medium and small calibre veins (0-3) was assessed

RESULTS

WMH analysis on imaging:
• WMH severity was semi-qualitatively assessed using the Fazekas Scale on 3 levels (anterior, middle and posterior)

Vascular Pathology in the WMH cohort
• Venous collagenosis in both small and medium calibre veins was a common finding in both the AD and Control groups
• Average % lvs was 19.8% and was a frequent finding

WMH and Correlations
• WMH scores significantly correlated with:
 ➢ periventricular white matter pallor (rs(116)=0.252, p=0.006)
 ➢ collagenosis of small veins (rs(114)=0.268, p=0.004)
 ➢ collagenosis of medium veins (rs(114)=0.266, p=0.004)
 ➢ % lvs (rs(112)=0.377, p=0.000)
• % lvs is the strongest predictor of WMH (β=0.330, df=108, p=0.000)

ACKNOWLEDGEMENTS: We are grateful for support from Canadian Institute of Health Research MOP-13129, Alzheimer Society of Canada, Alzheimer’s Association (USA), LC Campbell Foundation, and Heart and Stroke Foundation Canadian Partnership for Stroke Recovery

DISCUSSION
• Venous collagenosis is a frequent finding in individuals with WMH and may:
 ➢ increase vascular resistance leading to decreased perfusion of deep white matter
 ➢ lead to edema in the deep white matter by shunting blood from the internal cerebral veins to the transmedullary veins
 ➢ impair interstitial fluid drainage and facilitate the accumulation of certain toxins such as Beta-amyloid2
• Stenosis of both the small and large veins may be a possible mechanism underlying periventricular WMH with PVIs

CONCLUSION
• Venous collagenosis in periventricular veins of all calibre may underlie the pathogenesis of WMH and possibly lead to infarction
• Neuropathologists should attend to and document the presence of venous collagenosis in the standard neuropathological examination

REFERENCES