Background

- Vascular Cognitive Impairment (VCI) is defined as cognitive impairment attributable to vascular risk factors and vascular pathologies.¹
- Diagnosis of VCI: (i) history of stroke or evidence of vascular disease on neuroimaging (2) neuropsychological testing should demonstrate cognitive deficits.²
- In 2006 the National Institute of Neurologic Disorders and Stroke and the Canadian Stroke Network (NINDS-CSN) developed the Vascular Impairment Harmonization Standards (VCIHS), a neuropsychological assessment of cognition that evaluates language, memory, visuospatial, and executive functions.³
- English, French, Chinese, and Korean adaptations of the VCIHS have been developed and their utilities have been assessed.⁴
- However, validation of the VCIHS using extensive MRI guided brain volumetric analyses to assess the influences of vascular neuro-pathology on each facet of cognition have not been explored.

Methods

1. Study Participants
- 60 participants with acute ischemic stroke to:
 - (i) Achieve MRI guided validation of the Korean-VCIHS;
 - (ii) Determine neuropathologic substrates of VCI on MRI by investigating the associations between (i) brain atrophy, (ii) infarct volume, and (iii) degree of white matter hyperintensity (WMH) and the Korean-VCIHS.

2. Magnetic Resonance Imaging
- T1-weighted, T2-weighted, Diffusion Weighted Imaging (DWI), and FLAIR images were acquired on 1.5T Philips MRI scanner at Hallym University Hospital in South Korea within four days of stroke event.

3. Image Processing
- Acutely infarcted tissues (hyperintensity on DWI) and previous co-occurring infarcts (hypoedema on T1) were traced using ANALYZE 8.0 software.
- WMH on FLAIR images were assessed using a semi-automated fuzzy lesion extractor (FLEX) pipeline.
- T1-based brain tissue segmentation was achieved using a modified in-house Semi-Automatic Brain Region Extraction (SABRE) Pipeline ⁵ See Figure 1.

4. Neuropsychological Assessment
- 3 months after stroke, MMSE (Mini-Mental Status Exam) and the VCIHS were administered.
- The VCIHS was comprised of 10 tests across 4 Cognitive Domains:
 - Memory Function
 - i. Hopkins Verbal Learning Test (Immediate Recall, Delayed Recall and Recognition)
 - Executive Function
 - i. Trails Making Test-Part A and Part-B
 - ii. Controlled Oral Word Association Test (Phonemic)
 - iii. Digit Symbol Coding
 - Visuospatial Function
 - i. Ray Complex Figure Task Copy
 - Language Function
 - i. Boston Naming Test
 - ii. Controlled Oral Word Association Test (Animal)

Results

5. Statistical Analysis
- Using Microsoft SPSS 20.0 Software Multiple linear regression analyses with backwards elimination of non-significant variables were performed.
- Brain Parenchymal Fraction (BPF), stroke volume, WMH volume, and the ARWMC scale as predictors of (i) Executive Function (ii) Memory (iii) Visuospatial Function and (iv) Language Function
- Age, sex, education and stroke location were controlled for in all analyses.

Table 1: Demographic and Cognitive Data

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>74.5 ±7.2</td>
</tr>
<tr>
<td>Gender (Male/female)</td>
<td>35/25</td>
</tr>
<tr>
<td>T1WMH Volume (cc)</td>
<td>23.6 ±7.2</td>
</tr>
<tr>
<td>T2 Volume (cc)</td>
<td>27.2 ±7.2</td>
</tr>
<tr>
<td>T1WMH (mm)</td>
<td>4.2 ±1.2</td>
</tr>
<tr>
<td>VCIHS - Total Score</td>
<td>1.2 ±0.2</td>
</tr>
</tbody>
</table>

Table 2: Volumetric Data*

<table>
<thead>
<tr>
<th>Volume</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Matter Volume (cc)</td>
<td>23.6 ±7.2</td>
</tr>
<tr>
<td>T2 Volume (cc)</td>
<td>27.2 ±7.2</td>
</tr>
<tr>
<td>T1WMH Volume (cc)</td>
<td>23.6 ±7.2</td>
</tr>
<tr>
<td>T1WMH (mm)</td>
<td>4.2 ±1.2</td>
</tr>
</tbody>
</table>

Discussion and Conclusion

- Executive dysfunction was the most common feature in this cohort with VCI, suggesting that VCI oriented global cognitive measures should adequately assess executive function.
- The K-VCIHS Global Score (Average of 10 Tests) attains 40% of its score to executive function, while each cognitive domain in the K-VCIHS Global Score (Average of 4 Cognitive Domains), has a 25% contribution to the overall cognitive score.
- Executive function in the whole sample of stroke patients (model 1), was related to ischemic infarction volume. However, in patients with supratentorial strokes (model 2;Figure 2A), executive function was also related to global WMH volume.
- This study also has implications for calculating global cognitive scores from individual test scores, as different brain behavior relationships were noted depending on how the Global VCIHS Z-score was calculated:
 - While the K-VCIHS Global Score (Average of 4 Cognitive Domains), was associated with brain atrophy (model 8), the K-VCIHS Global Score (Average of 10 Tests) was associated with infarction volume (model 7).
- Overall, these results suggest that the Korean adaptation of the NINDS-CSN VCIHS-NP is reflective of the varying effects of brain atrophy, white matter hyper-intensities and stroke lesions on cognition.
- We also identify plausible neuroimaging substrates of VCI:
 - Brain Atrophy: Global cognition and visuospatial function
 - White Matter Hyperintensity: Executive function in those with supratentorial stroke
 - Infarction Volume: Global cognition, memory, executive function, visuospatial function

Acknowledgements

We gratefully acknowledge the financial support from Eisai Korea, Sunnybrook Research Institute, the Canadian Institute of Health Research (MT-13129), The L. C. Campbell Foundation and The Heart and Stroke Foundation Centre for Stroke Recovery.

References

5. Rabinstein AA, et al. Executive dysfunction is the most common feature in this cohort with VCI. 2019;504. PMCID: PMC5776059.
8. Vinters HV, et al. The NINDS-CSN VCIHS-NP is reflective of the varying effects of brain atrophy, white matter hyper-intensities and stroke lesions on cognition.
9. We also identify plausible neuroimaging substrates of VCI:
 - Brain Atrophy: Global cognition and visuospatial function
 - White Matter Hyperintensity: Executive function in those with supratentorial stroke
 - Infarction Volume: Global cognition, memory, executive function, visuospatial function

For more information or to download a copy of this poster, please visit brainlab.ca/posters or scan this QR code.