Carotid atherosclerosis and cerebral small vessel disease

Canadian Atherosclerosis Imaging Network (CAIN) Project 1

Ramirez, J.¹,²,³; Singh, N.¹,²,³; Black, S.E.¹,²,³; & Moody, A.R.¹,²,³ on behalf of the Canadian Atherosclerosis Imaging Network (CAIN) Project 1

¹L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook HSC, ²Heart & Stroke Foundation Canadian Partnership in Stroke Recovery; Sunnybrook Site, ³Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ⁴UofT, Institute of Medical Science, Department of Medicine (Neurology)

Background

Combining in vivo imaging of vessel wall disease with imaging of occult end-organ disease, and the acquisition of clinical-pathological end points, CAIN’s central goal is to move innovations in clinical evaluation and therapeutic interventions aimed at cardiac and neurological diseases [1]. Given the increasing burden of vascular diseases world-wide with population aging, the CAIN Project 1 is a unique pan-Canadian brain and cardot imaging project focused on understanding the natural history of carotid disease and associations with cerebrovascular outcomes.

Objective

The goal of Project 1 is to recruit and serially image approx. 450 subjects with non-surgical carotid disease (stenosis between 30 and 95%). We describe results from a preliminary analysis aimed to evaluate the role of carotid atherosclerosis in cerebral small vessel disease on a subsample (n=93) data acquired at baseline.

Results

The bilateral stenosis group had significantly greater SH volumes (p<0.05), attributed primarily to deep white SH (p<0.01) rather than periventricular SH (n.s.).

No significant between group differences were demonstrated for brain tissue atrophy measures.

Discussion

These preliminary cross-sectional results suggest a potential relationship between carotid atherosclerosis and end-organ cerebral small vessel disease.

In addition to MRI-derived measures for brain volume and distribution of ischemic cerebral white matter disease, future analyses will include:

i) Progression analyses from serial assessments

ii) Predictive modelling of end-organ and clinical outcomes using 3D carotid MRI features of vessel disease and other vascular risk factors

iii) Evaluation of carotid plaque components, specifically intraplaque hemorrhage

Methods

Lesion Explorer

Quantification of cerebral small vessel disease: periventricular (pvSH), deep white (dwSH), and lacunar infarcts [2-3].

Fig. 1 (a) SH segmentation overlaid on axial T1; (b) Axial T2-weighted; (c) 3D surface volume rendering from above and, (d) from angled side views.

Left hemisphere SH depicted in purple, lacunar infarcts depicted in red, periventricular infarcts depicted in white. Right hemisphere SH depicted in yellow, lacunar infarcts depicted in green, periventricular infarcts depicted in blue. (a & d displayed in radiological convention; c & d displayed in neurological convention).

Fig. 2 Baseline carotid stenosis was assessed using routine clinical imaging and confirmed with MRA.

After head-size correction and normalization of skewed data, brain atrophy and small vessel disease burden was compared between bilateral and unilateral stenosis (>50%) groups controlling for sex and age.

References

1. Trudel et al. (2013). Can J Cardiol
2. Ramirez et al. (2011). Neuroimage
4. Singh et al. (2013). J Vis Exp

Main Study Reference

2. CAIN: www.canadianimagingnetwork.org/

Acknowledgements

The authors gratefully acknowledge the CAIN investigation (see website for full list), the Medical Imaging Trials Network of Canada (MITNEC.org) and CAIN funding sources, including the Canadian Institutes of Health Research (CIHR) and the Canadian Foundation for Innovation, members of the Sunnybrook Brain Sciences Research Program led by Dr. Alain R. Mossoy, and members of the Sunnybrook Brain Sciences Research Program led by Dr. Sandra B. Black. JF receives partial funding support from the Canadian Vascular Network and the Heart & Stroke Foundation Canada Partnership for Stroke Recovery.

For more information or to download a copy of this poster, please visit braniab.ca/posters or scan this QR code.