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STUDY PURPOSE

To assess associations of amyloid deposition and
FDG uptake in subjects with minimal versus
moderate-severe periventricular white matter
hyperintensity (pvWMH) using 8F-Florbetapir and
13FE-FDG PET

BACKGROUND

Machine Learning (ML) refers to computational
tools that are trained using data

Random forests (RF) are a type of supervised
ML that trains a set (forest) of decision trees
K-means clustering is an unsupervised ML
algorithm that groups similar data points

Both RFs and K-means clustering are simple,
classical ML techniques

METHODS

Fifty-seven participants with mild cognitive
impairment (MCI), early Alzheimer Disease (AD)
or transient ischemic events (MMSE score > 20)
and severe pvWMH (Fazekas score = 3) recruited
from memory (38) and stroke (19) clinics

Each participant had a ‘®F-Florbetapir PET
(clinical read: 22 positive, 35 negative for
amyloid deposition); fifty-five had 3F-FDG PET (3
positive, 52 negative); twenty-five had 2-year
follow-up ‘3F-Florbetapir PET

A matched cohort of 57 patients with both *8F-
Florbetapir (28 positive, 29 negative) and 3F-
FDG (2 positive, 55 negative) taken from ADNI
We requested permission from ADNI to use their
ADNI2 PET technical manual as our own, which
we distributed to all of our participating sites
PET images processed using a MINC toolkit with
SUVRs calculated for 57 regions of interest (ROIls)
normalized to cerebellar grey matter (1°F-
Florbetapir) and pons (**F-FDG)

SUVRs used to train RFs and K-means clustering
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Illustration of RF with 3 trees. Initial data (left) used to train RF to
correctly classify clinical finding of new cases using 6 features.

Illustration of K-means clustering with K = 2. Initial data (left) has

two measurements in dimensions x and y. Data is clustered (right)

into blue and orange groups, with stars showing centers of mass.
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RESULTS

Supervised and unsupervised ML had similar
classification accuracy (~85%) for 3F-Florbetapir
PET with clinical interpretation as the gold
standard.

Most common ROIs used for classification were:
_eft posterior cingulate

_eft precuneus
_eft middle frontal gyrus

While associations of FDG uptake with pvWMH
were complex, amyloid deposition was higher in
subjects with moderate-severe pyWMH at
baseline and accumulated faster at 2-years in
subjects with moderate-severe pyWMH than in
matched ADNI cohorts

CONCLUSIONS

Results suggest amyloid deposition and
accumulation are associated with pvWMH load
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