

White matter hyperintensities affect activities of daily living differently across dementias-The Sunnybrook Dementia Study

Saira Saeed Mirza^{1,2}, Saeed U³, Ramirez J^{2,3}, Stuss DT⁴, Black SE^{1,2,3*}, and Masellis M^{1,2,3*}

*Contributed equally as senior co-authors

1. Division of Neurology (Dept. of Medicine), University of Toronto, 2. Hurvitz Brain Sciences Research Program and 3. LC Campbell Cognitive Neurology Research Unit-Sunnybrook Research Institute, 4. Dept. of Psychology (Faculty of Arts and Science), University of Toronto

BACKGROUND	RESULTS				
 Loss of functional independence is a feature of all dementia diagnoses. White matter hyperintensities (WMHs) are associated with functional impairment in dementia, but this association has mostly been studied in 	Table 1: Baseline characteristics of the study population.				
	CHARACTERISTICS	DESCRIPTIVES			
relation to Alzheimer's Disease (AD).		Total sample	AD	DLB	P-value
OBJECTIVE		N=277	n=227	n=50	
	Age	70.8 (10)	72 (9.6)	65.7 (10.4)	<0.001

- To investigate if WMHs predict activities of daily living (ADL) in a cohort of dementia patients with AD or Dementia with Lewy Bodies (DLB) combined.
- To test if the association between WMHs and ADLs is influenced by clinical diagnosis of dementia.

METHODS

Setting: the Sunnybrook Dementia Study

Study population:

- Cross-sectional analysis: 277 dementia patients (AD=227, DLB=50)
- Longitudinal analysis ~1.5 years: 164 dementia patients (AD=136, DLB=28) **Predictor variables:**
- WMH:
- Standardized volumetric MRI-total (deep and periventricular) WMHs quantified by semiautomatic segmentation using Lesion Explorer.
- Covariates: age, sex, hypertension, diabetes, stroke, hyperlipidemia, global Examination-MMSE), cognition (Mini-Mental-State neuropsychiatric symptoms (Neuropsychiatric-Inventory), and clinical dementia diagnosis (AD and DLB).
- Longitudinal analyses also adjusted for baseline ADLs and time between two ADL assessments.

Outcome variables:

• ADLs:

	· · · · ·	· ,	· · · ·	
Women	145 (52.3)	124 (54.6)	21 (42)	0.11
Education, years	14.2 (3.8)	14.1 (3.8)	14.4 (3.9)	0.17
MMSE, score	23.6 (4.2)	23.4 (4.2)	24.6 (4.1)	<0.001
NPI, score	12.3 (13.6)	10.7 (12.9)	19.6 (14.1)	<0.001
WMH cm3	6.0 (8.3)	6.6 (8.9)	3.2 (4.1)	<0.001
Deep	0.76 (1.0)	0.8 (1.0)	0.5 (0.8)	<0.001
Periventricular	5.2 (7.8)	5.8 (8.4)	2.6 (3.5)	<0.001
Stroke	21 (7.6)	17 (7.5)	4 (8)	0.90
HTN	95 (34.3)	79 (34.8)	16 (32)	0.71
Diabetes	31 (11.2)	26 (11.4)	5 (10)	0.77
Hyperlipidaemia	96 (34.7)	75 (33)	21 (42)	0.23
BADL, score	93.1 (12.6)	93.7 (11.9)	90.8 (14.9)	0.0004
IADL, score	70.4 (25.7)	71.3 (26.2)	66.5 (22.8)	0.003

Values are means (standard deviation) or counts (percentage) P-values are based on T-tests for continuous and Chi2 tests for categorical variables

Interaction between WMH and diagnosis <0.01</p>

)	TABLE 2: Cross-sectional association of WMH and ADLs.				
	ACTIVITIES OF	ACTIVITIES OF DAILY LIVING			
	ALZHEIMER'S DISEASE n=227	DEMENTIA WITH LEWY BODIES n=50			

- Assessed by Disability Assessment for Dementia (DAD) Scale
- Basic ADL (BADL) and Instrumental ADL (IADL)
- Component scores for BADL and IADL: Planning, Initiation, and Action
- Total score (planning, initiation, and action) calculated by taking the score in each category and dividing by the max potential score.

Statistical analysis:

- Multiple linear regression models
- Interaction between WMH and diagnosis tested
- Both cross-sectional and longitudinal analyses repeated stratified for diagnosis, i.e. in AD and DLB groups.

	Difference (95% CI)	P-value	Difference (95% CI)	P-value
Basic activities of daily living				
WMH	-0.60 (-1.67,0.46)	0.27	-3.40 (-6.88,0.08)	0.05
Instrumental activities of daily living				
WMH	-0.30 (-2.40,1.81)	0.78	-2.96 (-8.27,2.34)	0.26

TABLE 3: WMH and risk of decline in function.

		ACTIVITIES OF DAILY LIVING			
or		ALZHEIMER'S DISEASE n=136		DEMENTIA WITH LEWY BODIES n=28	
		Difference (95% CI)	P-value	Difference (95% CI)	P-value
	Basic activities of daily	living			
	WMH	-0.65 (-2.86,1.56)	0.56	-8.15 (-16.08,-0.23)	0.04
	Instrumental activities of	umental activities of daily living			
	WMH	-0.24 (-3.11,2.63)	0.87	-10.08 (-18.43,-1.71)	0.02

All models are adjusted for age, sex, education, MMSE, NPI, prevalent stroke, hypertension, hyperlipidaemia, and diabetes mellitus type 2. Longitudinal models additionally adjusted for baseline ADL score and time between the two ADL assessments.

POST-HOC RESULTS

action (Ac) showed that:

Associations were driven by periventricular WMHs

largely driven by the **Action** component

Analyses with component ADL scores, i.e. Planning (PI), initiation (In) and

- Cross-sectional association between WMH and ADL in DLB group was

Cross-sectional

Longitudinal

F-up

ADLs

Secondary analyses:

- Associations tested separately for periventricular and deep WMH
- Using component BADL and IADL scores as outcomes

REMARKS

- Longitudinal association between WMH and ADL in DLB group was driven by all components White matter hyperintensities BADL—total sample IADL—total sample

- Despite lower WMH burden in DLB, associations of WMHs with ADLs were stronger in DLB group than in the AD group.
- **Cross-sectional** WMHs possibly interact with DLB pathology differently than with AD pathology consequently influencing functionality.
- Motor deficits and balance problems may have a role in observed associations in the DLB group.
- Preventive strategies for WMHs may result in some preservation of function in dementia patients, particularly in patients with DLB.

ACKNOWLEDGEMENTS

saira.mirza@sunnybrook.ca; saira.mirza@mail.utoronto.ca

Longitudinal